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We experimentally demonstrate a controlled-phase gate for continuous variables using a cluster-state
resource of four optical modes. The two independent input states of the gate are coupled with the cluster in
a teleportation-based fashion. As a result, one of the entanglement links present in the initial cluster state
appears in the two unmeasured output modes as the corresponding entangling gate acting on the input
states. The genuine quantum character of this gate becomes manifest and is verified through the presence
of entanglement at the output for a product two-mode coherent input state. By combining our gate with the
recently reported module for single-mode Gaussian operations [R. Ukai et al., Phys. Rev. Lett. 106,
240504 (2011)], it is possible to implement any multimode Gaussian operation as a fully measurement-

based one-way quantum computation.
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The one-way model of measurement-based quantum
computation [1] is a fascinating alternative to the standard
unitary-gate-based circuit model, for qubits as well as for
continuous-variable (CV) encodings [2—4]. Such one-way
schemes are realized through single-qubit or single-mode
measurements together with outcome-dependent feedfor-
ward operations on a preprepared multiparty entangled
state, the so-called ‘““cluster state.”” By choosing an appro-
priate set of measurement bases on a sufficiently large
cluster, an arbitrary unitary operation can be implemented
for the corresponding encoding.

Prior to an actual extension of the one-way model from
qubits to continuous variables, a CV analogue to qubit
cluster states was proposed [2]. Subsequently, the notion
of an in-principle universality of CV one-way quantum
computation was proven on the assumptions of sufficiently
long measurement-based gate sequences [5] and perfectly
squeezed optical cluster-state resources, as well as the in-
clusion of at least one nonlinear, non-Gaussian measure-
ment device [3]. Only shortly thereafter, by using squeezed
vacuum states and beam splitters [6], various cluster states
were generated in the lab [7,8]. Among these was the four-
mode linear cluster state which would allow us to imple-
ment arbitrary single-mode Gaussian operations [9,10].
However, in order to demonstrate such single-mode gate
operations on arbitrary input states, the input mode has
to be attached to the cluster state. For a single quadratic
gate, this can be accomplished using two squeezed-state
ancillae, as described in Ref. [11]. A much simpler and
more general solution [10], however, would employ a multi-
mode measurement such as a Bell measurement, similar
to standard CV quantum teleportation [12]. By using a
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four-mode linear cluster state and a Bell-measurement-
based input coupling, a typical set of single-mode
Gaussian operations such as squeezing and Fourier trans-
formations was recently experimentally demonstrated [13].

The final missing element towards implementing arbi-
trary multimode Gaussian transformations in a one-way
fashion [10] is a universal two-mode entangling gate. In
fact, universal multimode operations (even including non-
Gaussian ones) are, in an asymptotic sense, realizable
when universal single-mode gates (including at least one
non-Gaussian gate) are combined with any kind of qua-
dratic (Gaussian) interaction gate [5]. For example, certain
nonlinear multimode Hamiltonians such as a fairly strong
two-mode cross-Kerr interaction would only require apply-
ing tens of quadratic and cubic single-mode gates, in
addition to the two-mode controlled-phase (C,) gate
[14]. More specifically, an arbitrary multimode Gaussian
operation can be exactly recast as a finite decomposi-
tion into single-mode Gaussian gates and a quadratic
(Gaussian) two-mode gate [5,10,15,16]. The most natural
and easily implementable two-mode gate in this setting
would be that corresponding to a vertical link between two
individual modes of a CV cluster state—the C, gate [3].
Very recently, Wang et al. reported an attempt to experi-
mentally demonstrate this gate [17]. However, the cluster
state in that experiment was not of sufficient quality in
order to operate the gate as a genuine nonclassical entan-
gling gate; in fact, the two-mode input quantum state was
degraded by such a large excess noise that no entanglement
at all was present at the output.

In this Letter, we demonstrate a CV cluster-based C,
gate operating in the quantum realm. In order to verify its
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nonclassicality, we show that the two-mode output state is
indeed entangled when the input state is a product of two
single-mode coherent states. Furthermore, several mani-
festations of the general input-output relation of the gate
are realized, using various distinct coherent states as the
input of the gate. The resource state is a four-mode linear
cluster state, as illustrated in Fig. 1(a). Two independently
prepared input coherent states are attached to the cluster
state through beam splitters and, subsequently, homodyne
detections are applied on the individual modes. This input-
to-cluster coupling plus detection corresponds to a two-
mode Bell measurement like in CV quantum teleportation
[10], similar to those teleportation-based gates for qubits
[18,19]. However, note that a fully measurement-
controlled evolution is still possible by rotating each
one-mode homodyne quadrature basis [10], or even replac-
ing it by a nonhomodyne projection measurement.
Similarly, this CV entangling gate could be directly incor-
porated into a one-way quantum computation of larger
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FIG. 1 (color online). (a) An abstract illustration of our ex-
periment. (b) Input coupling through quantum teleportation for
larger one-way quantum computations. (c) Cluster shaping.
(d) A schematic of our experimental setup. OPO, optical para-
metric oscillator; LO, local oscillator for homodyne measure-
ment; EOM, electro-optical modulator; HD, homodyne
detection; Bell, Bell measurement.

scale, see Fig. 1(b) [20]. Though not demonstrated here,
on-off control of the entangling gate can be achieved by
two additional vertices [see Fig. 1(c)] [21].

In the following, we shall use the canonical position and
momentum operators, £; and p;, where the subscript j
denotes an optical mode and [%;, pi] = i§ /2. The CV
C gate corresponds to the unitary operator C;, = e2%/%
with the input-output relation,

N I S\z
where éjk = (&, P, & P17
(0 0
T

and [ is the 2 X 2 identity matrix.

We demonstrate this C; gate by using a four-mode linear
cluster state [C1-C2-C3-C4 in Fig. 1(a)]. A CV cluster
state is defined, in the ideal case, through its zero eigen-
values for certain linear combinations of the canonical
operators, pc; — ZkEN,fCCk(E 5 ;). Here, N; denotes the
set of nearest-neighbor modes of mode j, when the state
is represented by a graph; see Figs. 1(a) and 1(b). The
four-mode linear cluster state can be interpreted as two
Einstein-Podolsky-Rosen (EPR) pairs (C1-C2 and C3-C4)
with a C, interaction between them (C2-C3), up to local
phase rotations. When two input states encoded in modes
a and B are teleported to modes C2 and C3, using the
double instance of EPR states, the initial C, interaction
between the two EPR pairs is teleported onto the two input
states [20].

Let us describe the above procedure for a nonideal,
finitely squeezed cluster state corresponding to nonzero
variances for the operators 5 j- When a four-mode linear
cluster state is generated by using four finitely squeezed
states and three beam splitters as in Fig. 1(d), the excess

noises are as follows: &, =\/§e”1§(10), 5, = —\/il—oe*’X
(0 —rA(0) & SN —r A0 &
Py = e b 8y = e — Fpepy and 8, =

—2e77 [7510), where e " ﬁ;o) is the squeezed quadrature of
the jth squeezed state. Here, we assume identical squeez-
ing levels with parameter r for simplicity. Note that the
limit r — oo corresponds to an ideal cluster state. Two pairs
of modes, (a, C1) and (B, C4), are then subject to Bell
measurements. For this purpose, four observables, p, —
Xc1» Xa = Pc1s Pp — Xcs» and Xg — Py, are measured,
giving the measurement results 7, t;, g, and 14, respec-
tively. Then the corresponding feedforward operations
Xoo(t)Zeo(t, + t4))2'c3(t4)2c3(t,8 + 1) are performed on
modes C2 and C3, where X;(s) = e 27 and Z;(s) =
%% are the position and momentum displacement opera-
tors. The resulting position and momentum operators of
modes C2 and C3 at the output, labeled by u and v, can
then be written as
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This completes the C, operation. Here, o= (—31, —34 +
5,5, — b4, —8, + 55)7 represents the excess noise of our C,
gate. In the ideal case with r — oo, the noise term 5
vanishes and a perfect C, operation is achieved. As the
C; gate is an entangling gate, the presence of entanglement
at the output for a product input state (in spite of the excess
noise 3) is crucial to prove the nonclassicality of our gate
implementation. A sufficient condition for inseparability of
a two-mode state is (A%(gp, —£,)) +(A%*(gp, —X,)<g
for some g € R [22-24]. We show that this inequality is
satisfied at the output for a two-mode vacuum input. In our
case, g = 3/4 gives the minimal resource requirement,
e 2" <2/5, corresponding to approximately —4.0 dB
squeezing.

A schematic of our experimental setup is illustrated in
Fig. 1(d). The light source is a continuous-wave Ti:sap-
phire laser with a wavelength of 860 nm and a power of
1.7 W. Four squeezed vacuum states are generated by four
optical parametric oscillators (OPOs). We employ the ex-
perimental techniques described in Refs. [8,25] for the
generation of the cluster state and the feedforward process,
respectively. The resource squeezing is —5 dB on average
and the detectors’ quantum efficiencies are greater than
99%. The interference visibilities are 97% on average,
while the propagation losses from the OPOs to the homo-
dyne detectors are 3%—10%.

In the following, we show our experimental results. In
Fig. 2, the input-output relation of our gate is investigated,
using several coherent states for the input. In Fig. 3, the
correlations at the output are determined, from which the
presence of entanglement is verified. We use a spectrum
analyzer to measure the power of the output quadratures.
The measurement frequency is 1 MHz. The resolution and
video bandwidths are 30 kHz and 300 Hz, respectively. All
data in Fig. 2 are averaged 20 times, while those in Fig. 3
are averaged 40 times.
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First, Fig. 2(a) shows the variances of the output quad-
ratures when the two inputs are each in a vacuum state. In
the case of the ideal C, gate, the variances of £, and %,
remain unchanged and thus are equal to the shot noise level
(SNL), while those of p,, and p, are 3.0 dB above the SNL
(2 times the SNL) as shown by the cyan lines. When the
resource squeezing is finite, the output states are degraded
by excess noise. We show as a reference the theoretical
prediction for a vacuum resource [r = 0 in Eq. (3)] by
green lines, where the variances of X, and %, are 4.8 dB
above the SNL (3 times the SNL), while those of p, and
p, 7.0 dB above the SNL (5 times the SNL). The experi-
mental results of (A%%,), (A?p,,), (A%%,), and (A%p,),
shown by the red traces, are between cyan and green lines
due to the finite resource squeezing. These correspond to
2.4,4.6,2.2, and 4.6 dB above the SNL, respectively. These
results are consistent with the resource squeezing level of
—5 dB, which leads to 2.1 dB for fcw X, and 4.7 dB for
Pu> Py above the SNL.

In order to verify the general input-output relations, we
employ coherent input states [Figs. 2(b)-2(e)]. The powers
of the amplitude quadratures are measured in advance,
corresponding to 21.5 dB for mode « and 21.2 dB for
mode S, respectively, compared to the SNL. Figure 2(b)
shows the powers of the output quadratures as red traces
when the input « is in a coherent state with a nonzero
amplitude only in the %, quadrature; the input 8 is in a
vacuum state. We observe an increase in powers of X, and
D, caused by the nonzero coherent amplitude. On the other
hand, p, and X, are not changed compared to the case of
two vacuum inputs. In the same figure, the theoretical
prediction is shown by blue lines. Clearly, the experimental
results are in agreement with the theory. Similarly,
Figs. 2(c)-2(e) show the results with a nonzero coherent
amplitude in the p,, %3, and pg quadratures, respectively.
We see the expected feature of the C, gate that the quad-
ratures in modes « and 3 are transmitted to modes p and v
with unity gain and X, and %4 are transferred to p, and p,.
We believe that the small discrepancies between our

Ty Pp Ty Pu Ty Pu Ty Pu

10 30
m I o @20;, 1
(] [} L 4 4 4 4
% g —— % 10
S N AP O, I 1]

(a) Input: vac. (b) Input: Za-coh. (c) Input: pa-coh. (d) Input: &g-coh. (e) Input: pg-coh.

FIG. 2 (color). Powers at the outputs. (a) Variances of the output quadratures for vacuum inputs. The black and red traces correspond
to the shot noise levels (SNLs) and output quadratures, respectively. The green lines show the theoretical prediction when no resource
squeezing is available, while the cyan traces show the theoretical prediction for an ideal C; gate. (b)—(e) Powers of the output
quadratures where ((£,), {Po), (£5), (Pg)) are (a, 0,0, 0), (0, a,0,0), (0,0, b,0), and (0,0, 0, b), and where a and b correspond to 21.5
and 21.2 dB above the SNL, respectively. The blue lines show the theoretical prediction based on (a) and different input coherent

amplitudes. vac., vacuum state; coh., coherent state.
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FIG.3 (color online). Entanglement at the output.

(a) Entanglement verification with several gains g. (i) Without
resource squeezing, (ii) with —5 dB resource squeezing, (iii) with
infinite resource squeezing (the ideal case), (iv) sufficient condi-
tion for entangling, and (v) the reference variance when two
homodyne inputs are vacuum states. (b),(c) Variances of
(A%*(gp, — %£,)) and (A%(gp, — %,)) at g = 3/4, respectively.
0dB corresponds to the SNL. (vi) Reference where two homodyne
inputs are vacuum states, (vii) the measurement results, and
(viii) sufficient condition for entanglement.

experimental results and the theoretical predictions are
caused by propagation losses and imperfect visibilities.

For assessing the entanglement at the output, we use
two input states in the vacuum. The two homodyne signals
are added electronically with a ratio of g?:1 and 1:g? in
power, by which (A%(gp, — £,)) and (A%(gp, — %,)) are
measured.

Figure 3(a) shows the theoretical and experimental re-
sults for (A%(gp, — X,)) + (A*(gp, — %£,)) with several
gains g. The sufficient condition for entanglement is that
(A%(gp, — %,)) +(A%(gp, — %,)) is less than g, shown
by line (iv), for some g € R. When g = 0.63, 0.75, and
0.89, this criterion is satisfied in the experiment. The
results without and with resource squeezing roughly coin-
cide with the theoretical curves (i) and (ii), respectively. In
particular, Figs. 3(b) and 3(c) show the results for the
optimal gain g = 3/4. Traces (vi) show the reference for
normalization when the two homodyne inputs are vacuum
states. These levels correspond to 1 + g> times the SNL.
Traces (vii) show the measurement results for (A?(gp v
£,)) and (A*(gp, — £,)), which are —0.59 * 0.02 dB and
—0.50 = 0.02 dB relative to traces (vi), respectively. Note
that the error in determining the SNL is included in the
above errors. Lines (viii) show the sufficient condition for

entanglement, corresponding to the theoretical prediction
with about —4.0 dB resource squeezing. The fact that
traces (vii) are below lines (viii) proves that the output
state is entangled. By normalizing the entanglement crite-
rion, the obtained entanglement is quantified as follows:

I I
(20~ o))+ (0~ %))
— 0919 +0.003<1, atg=3/4 @)

Note that traces (vi) and (vii) and line (viii) correspond
to curves (v) and (ii) and line (iv) at g = 3/4, respectively.

In conclusion, we have experimentally demonstrated a
fully cluster-based C, gate for continuous variables. In
order to verify the essential property of the C, gate as an
entangling gate, product two-mode input states were
coupled with and processed through a four-mode cluster
state, and entanglement at the output was clearly observed.
In combination with our recent work on the experimental
demonstration of single-mode Gaussian operations, all
components for universal multimode Gaussian operations
are now available in a one-way configuration. The quality
of our C gate is only limited by the squeezing level of the
resource state, and the recently reported, higher levels of
squeezing [26,27] would even allow us to realize multistep
multimode one-way quantum computations. To achieve
full universality when processing arbitrary multimode
quantum optical states, the only missing ingredient is a
single-mode non-Gaussian gate.
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